Recognizing Weakly Simple Polygons

نویسندگان

  • Hugo Alves Akitaya
  • Greg Aloupis
  • Jeff Erickson
  • Csaba D. Tóth
چکیده

We present an O(n log n)-time algorithm that determines whether a given planar n-gon is weakly simple. This improves upon an O(n log n)-time algorithm by Chang, Erickson, and Xu [5]. Weakly simple polygons are required as input for several geometric algorithms. As such, how to recognize simple or weakly simple polygons is a fundamental question.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Weakly Simple Polygons

5 A closed curve in the plane is weakly simple if it is the limit (in the Fréchet metric) 6 of a sequence of simple closed curves. We describe an algorithm to determine whether 7 a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, 8 improving an earlier O(n3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As 9 an immediate corollary, we obtain the fir...

متن کامل

Reconstruction of Weakly Simple Polygons from their Edges

Given n line segments in the plane, do they form the edge set of a weakly simple polygon; that is, can the segment endpoints be perturbed by at most ε, for any ε > 0, to obtain a simple polygon? While the analogous question for simple polygons can easily be answered in O(n logn) time, we show that it is NP-complete for weakly simple polygons. We give O(n)-time algorithms in two special cases: w...

متن کامل

Generalizing Monotonicity: on Recognizing Special Classes of Polygons and Polyhedra

A simple polyhedron is weakly-monotonic in direction ~ d provided that the intersection of the polyhedron and any plane with normal ~ d is simply-connected (i.e. empty, a point, a line-segment or a simple polygon). Furthermore, if the intersection is a convex set, then the polyhedron is said to be weakly-monotonic in the convex sense. Toussaint [10] introduced these types of polyhedra as genera...

متن کامل

Recognizing S-Star Polygons

We consider the problem of recognizing star-polygons under staircase visibility (s-visibility). We show that the s-visibility polygon from a point inside a simple orthogonal polygon of n sides can be computed in O(n) time. When the polygon contains holes the algorithm runs in O(n log n) time, which we prove to be optimal by linear time reduction from sorting. We present an algorithm for computi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016